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Abstract
Given a Lie group acting on a manifold, our aim is to analyze the evolution of
differential invariants under invariant submanifold flows. The constructions are
based on the equivariant method of moving frames and the induced invariant
variational bicomplex. Applications to integrable soliton dynamics, and to the
evolution of differential invariant signatures, used in equivalence problems and
object recognition and symmetry detection in images, are discussed.

PACS numbers: 02.20.−a, 02.40.−k

1. Introduction

Let G be a transformation group acting smoothly on an m-dimensional manifold M. By an
invariant submanifold flow, we mean a G-invariant evolutionary partial differential equation

∂S

∂t
= �[S]

governing the motion of p-dimensional submanifolds S ⊂ M . Invariance requires that G is a
symmetry group of the partial differential equation, [46]: if S(t) is any solution and g ∈ G

any fixed group transformation, then S̃(t) = g ·S(t) is another solution. General classification
results for invariant evolution equations can be found in [47, 52].

Invariant curve flows, where p = 1, and surface flows, where p = 2, arise in an impressive
range of applications, including geometric optics [6], elastodynamics [33], computer vision
[52, 53, 58, 60, 62], visual tracking and control [43], vortex dynamics [25, 32], interface
motions [62], thermal grooving [7], and elsewhere. A celebrated example is the Euclidean
invariant curve shortening flow [20, 21], in which a plane curve moves in its normal direction in
proportion to its curvature. In computer vision, Euclidean curve shortening and its equi-affine
counterpart have been successfully applied to image denoising and segmentation [52, 59, 60].
In the three-dimensional space, Euclidean-invariant curve flows include the integrable vortex
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filament flow [25, 32], while mean curvature and Willmore flows of surfaces have been the
subject of extensive analysis and applications [5, 13].

Given an invariant submanifold flow, a key issue is to track the induced evolution of its
basic geometric invariants—curvature, torsion and the like. While a number of particular
examples have been worked out by direct computation, e.g., in [20, 39–41], many cases
of interest have yet to appear in the literature, owing in part to the complexity of the
required calculations. Therefore, it is worth developing general, practical computational
tools to facilitate this often tedious task. Mansfield and van der Kamp [34] have already
proposed applying the equivariant moving frame methods developed by the author and many
collaborators, cf [15, 49], to this issue. Their approach focuses on the differential invariant
syzygies. The present paper takes a direct approach, applying computational tools developed
in [29] for handling the G-invariant variational bicomplex. Certain invariant differential
operators used in the analysis of invariant variational problems also play a key role here.

Any submanifold flow—invariant or otherwise—naturally splits into tangential and
normal components. As far as the extrinsic properties of the submanifold are concerned,
the tangential component is irrelevant, in that it only induces a reparametrization. On the
other hand, tangential flows do affect the evolution of differential invariants as the points move
around within the submanifold. Our computational techniques are designed to handle any
desired combination of tangential and normal evolution. In practice, there are two principal
variants: flows with no tangential components will be called normal flows, keeping in mind
that the ‘normal direction’ is specified not by an underlying metric (indeed, G need not act
isometrically or conformally), but rather by the (or, more correctly, a) moving frame induced
by the transformation group. Normal flows play the predominant role in engineering, computer
vision and most geometric applications.

Alternatively, one can require that the flow be intrinsic, meaning that it preserves the
group-adapted (co)frame as the submanifold evolves. In the case of curves, a flow is intrinsic
if and only if it preserves arc length. Remarkably, in many classical geometries, certain basic
intrinsic curve flows induce integrable, soliton evolutions for the differential invariants. The
prototypical example is the Euclidean-invariant vortex filament flow studied by Hasimoto
[25, 31, 32]. The curvature and torsion invariants of the evolving filament satisfy an integrable
dynamical system, which can be mapped to the completely integrable nonlinear Schrödinger
equation [1]. This led Lamb [30] to draw attention to the surprisingly common, but still poorly
understood connection between invariant curve flows and integrable soliton dynamics; since
then, many other examples have been found [4, 10, 12, 14, 22, 24, 28, 35, 36, 37, 42, 54, 56].
By ‘integrable’ we shall mean that the evolution equation possesses a recursion operator [44],
inducing an infinite hierarchy of higher order symmetries. As we will see, the invariant
variational bicomplex provides a natural candidate that turns out to be the recursion operator
in many examples. However, not all induced differential invariant evolutions are integrable,
and, at present, we do not understand the general conditions on the group action and invariant
curve flow needed to guarantee integrability. Extensions to surface evolutions can be found in
[9, 11, 16, 17, 38, 54].

As a consequence of the Cartan solution to the equivalence problem for submanifolds
under group actions [47], the differential invariant signature associated with a submanifold
[8] was proposed as a general, mathematically rigorous method for object recognition in the
presence of symmetry groups. For example, the signature of a plane curve under Euclidean
transformations is the curve parametrized by its curvature invariant and the derivative of
curvature with respect to arc length. Several numerical experiments involving the effect of the
curve shortening flow on the differential invariant signature were conducted, with encouraging
results. However, to date there has been no systematic effort to investigate the behavior of
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the induced signature flow, and our first task is to show how the induced signature flow
follows from the differential invariant evolution, in preparation for subsequent analysis and
applications.

2. The invariant variational bicomplex

We begin by quickly reviewing the basics of prolonged group actions on submanifold jets,
moving frames and the induced invariant variational bicomplex. Basic references include
[46, 47] for jets, contact forms, and prolonged Lie group actions [2, 63] for the variational
bicomplex [15, 49, 50] for the equivariant approach to moving frames, and [29] for the
moving frame construction of the invariant variational bicomplex. For simplicity, we will only
deal with finite-dimensional Lie group actions in this paper, although the general ideas can
be straightforwardly adapted to infinite-dimensional pseudo-group actions using more recent
extensions of the moving frame technology [51].

Let G be an r-dimensional Lie group, acting smoothly on an m-dimensional manifold M.
We will study the induced action on p-dimensional submanifolds S ⊂ M . For 0 � n � ∞, let
J n = J n(M,p) denote the nth order (extended) jet bundle for such submanifolds [47]. The
action of G on M naturally prolongs to an action on J n. Since the prolonged group actions
are all mutually compatible under projection J n → J k , we will avoid explicit reference to the
order of prolongation, and just use g · z(n) for the action of g ∈ G on the jet z(n) ∈ J n, rather
than the more traditional notation g(n) · z(n).

Let2 ρ: J n → G be a right-equivariant3 moving frame, meaning that ρ(g · z(n)) =
ρ(z(n)) · g−1 for all g ∈ G and all z(n) ∈ J n. Moving frames require freeness and regularity of
the prolonged group action, and are explicitly constructed by a normalization process based
on the choice of a compatible cross-section Kn ⊂ J n to the group orbits. Specifically, given
z(n) ∈ J n, we set g = ρ(z(n)) to be the unique group element such that g · z(n) ∈ Kn, where
defined. Compatibility of moving frames under the jet space projections allows us to also
suppress the order in the notation of ρ.

We use ι to denote the invariantization process induced by the moving frame. The
invariantization of a differential form � is the unique differential form ι(�) that agrees with �

when restricted to the cross-section. Invariantization defines an (exterior) algebra morphism
that projects differential functions and forms on J n to invariant differential functions and
forms.

Calculations take place in local coordinates. Let (x, u) = (x1, . . . , xp, u1, . . . , uq) be
local coordinates on M. Viewing the x’s as independent variables and the u’s as dependent
variables, we let uα

J = ∂#J u/∂xJ be the usual induced local coordinates on J n. Invariantization
of the jet coordinate functions produces the fundamental differential invariants:

Hi = ι(xi), I α
J = ι

(
uα

J

)
, α = 1, . . . , q, #J � 0. (2.1)

These naturally split into two classes: the r = dim G combinations of fundamental differential
invariants appearing in the cross-section equations are constant, and known as the phantom
differential invariants. The remainder, called the basic differential invariants, form a complete
system of functionally independent differential invariants.

2 All maps, differential forms, differential functions, etc., need only be locally defined; thus, the domain of ρ is
typically a suitable open subset of J n.
3 All classical moving frames [23] are left-equivariant, and can be obtained by composing ρ with the group inversion
map g �−→ g−1. We choose to concentrate on the right-equivariant version to (slightly) simplify some of the required
calculations.
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Separating the local coordinates (x, u) on M into independent and dependent variables
naturally splits the differential 1-forms on J∞ into horizontal forms, spanned by dx1, . . . , dxp,
and vertical forms, spanned by the basic contact 1-forms

θα
J = duα

J −
p∑

i=1

uα
J,i dxi, α = 1, . . . , q, #J � 0. (2.2)

Let πH and πV denote the projections mapping 1-forms on J∞ to their horizontal and
vertical (contact) components, respectively. The induced splitting d = dH + dV of the
differential into horizontal and vertical components results in the variational bicomplex. In
particular, if F(x, u(n)) is any differential function, its horizontal and vertical differentials are

dH F =
p∑

i=1

(DiF ) dxi, dV F = DF (θ) =
∑
α,J

∂F

∂uα
J

DJ θα =
∑
α,J

∂F

∂uα
J

θα
J , (2.3)

in which Di = Dxi denote the total derivative operators with respect to the independent
variables, DJ = Dj1 · · · Djk

are the higher order total derivatives, θ = (θ1, . . . , θq)T is the
column vector containing the order zero contact forms, while DF = (DF,1, . . . , DF,q) is the
Fréchet derivative or formal linearization of the differential function F.

We will employ our moving frame to invariantize the variational bicomplex as follows.
First, let

	i = ωi + ηi = ι(dxi), where ωi = πH(	i), ηi = πV (	 i),

i = 1, . . . , p, (2.4)

denote the invariantized horizontal 1-forms. Their horizontal components ω1, . . . , ωp form,
in the language of [47], a contact-invariant coframe for the prolonged group action, while
η1, . . . , ηp supply ‘contact corrections’ that make the 1-forms 	 1, . . . ,	p fully G-invariant.
The corresponding dual invariant total differential operators D1, . . . ,Dp are defined so that

dH F =
p∑

i=1

(DiF )	 i, dH � =
p∑

i=1

	i ∧ Di�, (2.5)

for any differential function F and, more generally, differential form �, on which the Di act
via Lie differentiation. Finally, let

ϑα
J = ι

(
θα
J

)
, α = 1, . . . , q, #J � 0, (2.6)

be the invariantized basis contact forms.
As in the usual, non-invariant bicomplex construction, the decomposition of invariant

1-forms on J∞ into invariant horizontal and invariant contact components induces a
decomposition of the differential. However, now d = dH + dV + dW splits into three
constituents, where dH adds an invariant horizontal form, dV adds an invariant contact form,
while dW replaces an invariant horizontal 1-form with a combination of wedge products of
two invariant contact forms. In other words, if we let Ω̃

r,s
denote the space of differential

forms of degree r + s spanned by wedge products of r-invariant horizontal 1-forms (2.4) and
s-invariant contact 1-forms (2.6), then

dH : Ω̃
r,s −→ Ω̃

r+1,s
, dV : Ω̃

r,s −→ Ω̃
r,s+1

, dW : Ω̃
r,s −→ Ω̃

r−1,s+2
. (2.7)

The resulting invariant variational quasi-tricomplex is characterized by the formulae

d2
H = 0, dHdV + dVdH = 0,

d2
W = 0, dVdW + dWdV = 0,

d2
V + dHdW + dWdH = 0. (2.8)
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Fortunately, the third, anomalous component dW plays no role in the applications considered
here; in particular, dW F = 0 for any differential function F.

Example 2.1. Euclidean geometry of plane curves: Consider the usual action

y = x cos φ − u sin φ + a, v = x cos φ + u sin φ + b, (2.9)

of the r = 3 dimensional planar Euclidean group SE(2) � SO(2) � R
2 acting on plane

curves C ⊂ M = R
2. To expedite the computations, we will assume that the curves are, at

least locally, given as the graphs of functions u = f (x). Extending the ensuing analysis to
arbitrarily parametrized curves is straightforward; indeed, while the resulting invariants have
more complicated formulae, their algebraic and differential interrelationships are exactly the
same.

The prolonged group transformations

vy = sin φ + ux cos φ

cos φ − ux sin φ
, vyy = uxx

(cos φ − ux sin φ)3
, etc., (2.10)

are found by implicit differentiation. The classical Euclidean moving frame [23] relies on
the coordinate cross-section K1 = {x = u = ux = 0} ⊂ J1, resulting in the normalization
equations y = 0, v = 0, vy = 0. Solving these for the group parameters g = (φ, a, b) yields
the right-equivariant4 moving frame

φ = −tan−1ux, a = − x + uux√
1 + u2

x

, b = xux − u√
1 + u2

x

. (2.11)

The fundamental differential invariants (2.11) are obtained by substituting the moving frame
formulae (2.11 into the transformed coordinates (2.10), leading to

H = ι(x) = 0, I0 = ι(u) = 0, I1 = ι(ux) = 0,

I2 = ι(uxx) = κ = uxx(
1 + u2

x

)3/2 , I3 = ι(uxxx) = κs, I4 = ι(uxxxx) = κss + 3κ3,
(2.12)

and so on. In particular, H, I0, I1 are the phantom invariants, while I2 = κ is the Euclidean
curvature. To obtain the invariant differential forms, we substitute the moving frame formulae
(2.11) into

dy = (cos φ) dx − (sin φ) du = (cos φ − ux sin φ) dx − (sin φ)θ,

where θ = du−ux dx is the order 0 contact 1-form. This results in the invariantized horizontal
1-form

	 = ι(dx) = ω + η =
√

1 + u2
x dx +

ux√
1 + u2

x

θ, (2.13)

which is a combination of the contact-invariant arc length form ω = ds and the contact
correction η. The dual invariant differential operator

D = Ds = (
1 + u2

x

)−1/2
Dx (2.14)

is the usual arc length derivative, and can be employed to generate the higher order differential
invariants. In a similar fashion, we construct the invariantized contact forms

ϑ = θ√
1 + u2

x

, ϑ1 =
(
1 + u2

x

)
θx − uxuxxθ(

1 + u2
x

)2 , . . . . (2.15)

4 Actually, this moving frame is only locally equivariant, since there remains an ambiguity of π in the prescription
of the rotation angle. For simplicity (and in accord with most treatments of this example), we shall ignore this
technicality, referring to [48] for a detailed discussion.
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3. Recurrence

Let v1, . . . , vr be a basis for the infinitesimal generators of our transformation group. We
prolong each infinitesimal generator to J n. For conciseness, we will retain the same notation
vκ for the prolonged vector fields which, in local coordinates, take the form

vκ =
p∑

i=1

ξ i
κ(x, u)

∂

∂xi
+

q∑
α=1

n∑
j=#J=0

ϕα
J,κ (x, u(j))

∂

∂uα
J

, κ = 1, . . . , r. (3.1)

The coefficients ϕα
J,κ = vκ

(
uα

J

)
can be successively constructed by Lie’s recursive prolongation

formula [46, 47]:

ϕα
J i,κ = Diϕ

α
J,κ −

p∑
j=1

uα
JjDiξ

j
κ . (3.2)

A straightforward induction establishes the explicit version, first written down by the author
in [45]:

ϕα
J,κ = DJ Qα

κ +
p∑

i=1

ξ i
κu

α
J,i , where Qα

κ = ϕα
κ −

p∑
i=1

ξ i
κu

α
i (3.3)

are the components of the characteristic of vκ .
Given a moving frame, by a recurrence relation, we mean an equation that expresses an

invariantly differentiated invariant in terms of the basic differential invariants (2.1). Strikingly,
all such relations are consequences of a single universal recurrence formula that governs the
differentials of all invariantized differential functions and forms on J∞.

Theorem 3.1. If � is any differential form on J∞, then

dι(�) = ι(d�) +
r∑

κ=1

νκ ∧ ι[vκ(�)], (3.4)

where ν1, . . . , νr are the invariantized Maurer–Cartan forms dual to the infinitesimal
generators v1, . . . , vr , while vκ(�) denotes the Lie derivative of � with respect to the prolonged
infinitesimal generator vκ .

The invariantized Maurer–Cartan forms ν1, . . . , νr are obtained by pulling back the usual
dual Maurer–Cartan forms µ1, . . . , µr on G by the moving frame map: νκ = ρ∗µκ . Details
would take us too far afield [29] but, fortunately, are superfluous thanks to the following
wonderful result that allows us to directly compute them:

Lemma 3.2. Let I1 = ι(z1), . . . , Ir = ι(zr ) be the phantom differential invariants stemming
from our cross-section. Then the corresponding phantom recurrence formulae

0 = dIς = dι(zς ) = ι(dzς ) +
r∑

κ=1

νκ ∧ ι[vκ(zς )], ς = 1, . . . , r, (3.5)

can be uniquely solved for the invariantized Maurer–Cartan forms ν1, . . . , νr .

Having solved the linear system (3.5) for ν1, . . . , νr , we then decompose the resulting
invariantized Maurer–Cartan forms into their invariant horizontal and contact components:

νκ = γ κ + εκ, where γ κ =
p∑

i=1

Rκ
i 	 i, εκ =

∑
α,J

Sκ,J
α ϑα

J , (3.6)

6
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where Rκ
i , Sκ,J

α are certain differential invariants. The Rκ
i will be called the Maurer–Cartan

invariants [26, 27, 50]. In the case of curves, the Rκ
i appear as the entries of the Frenet–

Serret matrix Dρ(x, u(n)) · ρ(x, u(n))−1, assuming G ⊂ GL(N) is a matrix Lie group [23].
Substituting (3.6) back into the universal formula (3.4) produces a complete system of explicit
recurrence relations for all the differentiated invariants and invariant differential forms.

In particular, successively setting � to be each of the jet coordinate functions xi, uα
J ,

results in the recurrence formulae for the fundamental differential invariants (2.1):

dHi = ι(dxi) +
r∑

κ=1

νκ ι[vκ(x
i)] = 	i +

r∑
κ=1

ι
(
ξ i
κ

)
νκ,

dIα
J = ι

(
duα

J

)
+

r∑
κ=1

νκ ι
[
vκ

(
uα

J

)] = ι

(
p∑

i=1

uα
J i dxi + θα

J

)
+

r∑
κ=1

ι
(
ϕα

J,κ

)
νκ

=
p∑

i=1

Iα
J i	

i + ϑα
J +

r∑
κ=1

ι
(
ϕα

J,κ

)
νκ . (3.7)

In view of (3.6), the coefficient of 	i in (3.7) yields the recurrence relations

DiH
j = δ

j

i +
r∑

κ=1

Rκ
i ι

(
ξ i
κ

)
, DiI

α
J = Iα

J i +
r∑

κ=1

Rκ
i ι

(
ϕα

J,κ

)
, (3.8)

where δ
j

i is the usual Kronecker delta. Owing to the functional independence of the basic
(non-phantom) differential invariants, these formulae, in fact, serve to completely characterize
the structure of the non-commutative differential algebra of differential invariants [15, 50].
Similarly, the contact components in (3.7) yield the vertical recurrence formulae

dV Hi =
r∑

κ=1

ι
(
ξ i
κ

)
εκ, dV Iα

J = ϑα
J +

r∑
κ=1

ι
(
ϕα

Kκ

)
εκ, (3.9)

while dW Hi = dW Iα
J = 0.

Next, the recurrence formulae (3.4) for the derivatives of the invariant horizontal forms
are

d	i = d[ι(dxi)] = ι(d2xi) +
r∑

κ=1

νκ ∧ ι[vκ(dxi)]

=
r∑

κ=1

νκ ∧ ι

(
p∑

k=1

Dkξ
i
κdxk +

q∑
α=1

∂ξ i
κ

∂uα
θα

)

=
r∑

κ=1

p∑
k=1

ι
(
Dkξ

i
κ

)
νκ ∧ 	k +

r∑
κ=1

q∑
α=1

ι

(
∂ξ i

κ

∂uα

)
νκ ∧ ϑα. (3.10)

The resulting 2-form can be decomposed into three basic constituents, belonging, respectively,
to the invariant summands Ω̃

2,0 ⊕ Ω̃
1,1 ⊕ Ω̃

0,2
. In view of (3.6), the terms in (3.10) involving

wedge products of two horizontal forms, i.e., in Ω̃
2,0

, yield

dH 	i = −
∑
j<k

Y i
jk	

j ∧ 	k, where Y i
jk =

r∑
κ=1

p∑
j=1

Rκ
j ι

(
Djξ

i
κ

) − Rκ
k ι

(
Dkξ

i
κ

)
(3.11)

7
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are called the commutator invariants, since combining (3.11) with (2.5) produces the
commutation formulae for the invariant differential operators:

[Dj ,Dk] =
p∑

i=1

Y i
jkDi = −

p∑
i=1

Y i
kjDi . (3.12)

Next, the terms in (3.10) involving wedge products of a horizontal and a contact form yield

dV 	i =
r∑

κ=1

[
q∑

α=1

ι

(
∂ξ i

κ

∂uα

)
γ κ ∧ ϑα +

p∑
k=1

ι
(
Dkξ

i
κ

)
εκ ∧ 	k

]
. (3.13)

Finally, the remaining terms, involving wedge products of two contact forms, provide the
formulae for the anomalous third component of the differential:

dW 	i =
r∑

κ=1

q∑
α=1

ι

(
∂ξ i

κ

∂uα

)
εκ ∧ ϑα. (3.14)

In a similar fashion, we derive the recurrence formulae (3.4) for the differentiated invariant
contact forms:

dϑα
J = d

[
ι
(
θα
J

)] = ι
(
dθα

J

)
+

r∑
κ=1

νκ ∧ ι
[
vκ

(
θα
J

)] = ι

(
p∑

i=1

dxi ∧ θα
J i

)
+

r∑
κ=1

νκ ∧ ι
(
ψα

Jκ

)
,

(3.15)

where

ψα
Jκ = vκ

(
θα
J

) = dϕα
Jκ −

p∑
i=1

[
ϕα

J iκ dxi + uα
J i dξ i

κ

] = dV ϕα
Jκ −

p∑
i=1

uα
J idV ξ i

κ (3.16)

are known as the vertical prolongation coefficients of the vector field vκ . For our purposes,
we only require the component of (3.15) that involves invariant horizontal forms:

dH ϑα
J =

p∑
i=1

	i ∧ ϑα
J i +

r∑
κ=1

γ κ ∧ ι
(
ψα

Jκ

)
. (3.17)

Since5

dH ϑ =
p∑

i=1

	i ∧ Diϑ (3.18)

for any contact form ϑ , we deduce the recurrence formulae

Diϑ
α
J = ϑα

J i +
r∑

κ=1

Rκ
i ι

(
ψα

Jκ

)
(3.19)

for the invariant (Lie) derivatives of the invariant contact forms. The latter can inductively be
solved to express the higher order invariantized contact forms as certain invariant derivatives
of those of order 0:

ϑα
J =

q∑
β=1

Eα
J,β(ϑβ) = Eα

J (ϑ), (3.20)

in which ϑ = (ϑ1, . . . , ϑq)T denotes the column vector containing the order zero invariantized
contact forms, while Eα

J = (
Eα

J , . . . , Eα
J

)
are certain invariant differential operators of

order #J .
5 Warning: the analogous formula is not valid for horizontal forms.
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In view of (3.9), (3.20), if K = K
(
. . . H i . . . I α

J . . .
)

is any differential invariant, we can
write its invariant vertical derivative in the form

dV K =
p∑

i=1

∂K

∂Hi
dV Hi +

∑
α,J

∂K

∂Iα
J

dV Iα
J = AK(ϑ) =

q∑
α=1

AK,α(ϑα), (3.21)

in which AK = (AK,1, . . . ,AK,q) is a row vector of invariant differential operators. We view
(3.21) as the invariant version of the vertical differentiation formula dV F = DF (θ), cf (2.3),
which motivates the following terminology.

Definition 3.3. The invariant linearization of a differential invariant K is the invariant
differential operator AK that satisfies dV K = AK(ϑ).

Remark. In [29], AK was called the Eulerian operator associated with K owing to its
appearance in the differential invariant form of the Euler–Lagrange equations for an invariant
variational problem.

Similarly, we combine (3.6), (3.13), (3.20) to produce formulae

dV 	i =
p∑

j=1

q∑
α=1

Bi
jα(ϑα) ∧ 	j =

p∑
j=1

Bi
j (ϑ) ∧ 	j (3.22)

for the vertical differentials of the invariant horizontal forms, in which Bi
j = (

Bi
j1, . . . ,Bi

jq

)
is a family of p2 row-vector-valued invariant differential operators, known, collectively, as
the invariant Hamiltonian operator complex, again stemming from its role in the invariant
calculus of variations. (See [55] for the original, non-invariant version.)

Example 2.1 (continued). The vector fields

v1 = ∂x, v2 = ∂u,

v3 = −u∂x + x∂u +
(
1 + u2

x

)
∂ux

+ 3uxuxx∂uxx
+

(
4uxuxxx + 3u2

xx

)
∂uxxx

+ · · · ,
(3.23)

form a basis for the prolonged infinitesimal generators of the planar Euclidean group action on
R

2. To establish the recurrence formulae, the initial step is to determine the invariantized
Maurer–Cartan forms ν1, ν2, ν3 dual to the generators (3.23), by solving the phantom
recurrence relations
0 = dH = dι(x) = ι(dx) + ν1ι[v1(x)] + ν2ι[v2(x)] + ν3ι[v3(x)] = 	 + ν1,

0 = dI0 = dι(u) = ι(ux dx + θ) + ν1ι[v1(u)] + ν2ι[v2(u)] + ν3ι[v3(u)] = ϑ + ν2,

0 = dI1 = dι(ux) = ι(uxx dx + θx) + ν1ι[v1(ux)] + ν2ι[v2(ux)] + ν3ι[v3(ux)]
= κ	 + ϑ1 + ν3.

Therefore,

ν1 = −	, ν2 = −ϑ, ν3 = −κ	 − ϑ1. (3.24)

The Maurer–Cartan invariants

R1 = −1, R2 = 0, R3 = −κ = −I2, (3.25)

can then be read off as the coefficients of the invariant horizontal 1-form 	 . Substituting
(3.24) into the higher order recurrence relations

dIk = dι(uk) = ι(uk+1 dx + θk) + ν1ι[v1(uk)] + ν2ι[v2(uk)] + ν3ι[v3(uk)]

= Ik+1	 + ϑk − ι
(
ϕk

3

)
(κ	 + ϑ1),

will prescribe their invariant horizontal differentials

dH Ik = (DIk)	 = (Ik+1 − ι
(
ϕk

3

)
κ)	.

9
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In particular,

DI2 = I3, DI3 = I4 − 3I 3
2 , DI4 = I5 − 10I 2

2 I3, (3.26)

and so on. These can be iteratively solved to produce the explicit formulae

I2 = κ, I3 = κs, I4 = κss + 3κ3, I5 = κsss + 19κ2κs, (3.27)

for the normalized differential invariants. Similarly,

dV I2 = ϑ2, dV I3 = ϑ3 − 3κ2ϑ1, dV I4 = ϑ4 − 10κκsϑ1. (3.28)

We next use (3.19) and (3.25) to compute the arc length derivatives of the invariant contact
forms

Dϑk = ϑk+1 + R1ι(ψk,1) + R2ι(ψk,2) + R3ι(ψk,3) = ϑk+1 − ι(ψk,1) − κι(ψk,3), (3.29)

where the vertical prolongation coefficients ψk,ν = vν(θk) are given by

ψk,1 = ψk,2 = 0, while
ψ0,3 = v3(θ) = uxθ,

ψ1,3 = v3(θx) = 2uxθx + uxxθ,

ψ2,3 = v3(θxx) = 3uxθxx + 3uxxθx + uxxxθ,

and so on. In particular,

Dϑ = ϑ1, Dϑ2 = ϑ3 − 3κ2ϑ1 − κκsϑ,

Dϑ1 = ϑ2 − κ2ϑ, Dϑ3 = ϑ4 − 6κ2ϑ2 − 4κκsϑ1 − (κκss + 3κ4)ϑ,
(3.30)

which can be recursively solved for

ϑ1 = Dϑ, ϑ3 = (D3 + 4κ2D + 3κκs)ϑ,

ϑ2 = (D2 + κ2)ϑ, ϑ4 = (
D4 + 10κ2D2 + 15κκsD + 4κκss + 3κ2

s + 9κ4
)
ϑ.

(3.31)

Substituting the latter formulae into (3.28) yields

dV κ = dV I2 = (D2 + κ2)ϑ, dV κs = dV I3 = (D3 + κ2D + 3κκs)ϑ,

dV I4 = (
D4 + 10κ2D2 + 5κκsD + 4κκss + 3κ2

s + 9κ4
)
ϑ,

(3.32)

and hence, in view of (3.27),

dV κss = dV I4 − 9κ2dV κ = (
D4 + κ2D2 + 5κκsD + 4κκss + 3κ2

s

)
ϑ.

Thus, we deduce the following invariant linearization operators:

Aκ = D2 + κ2, Aκs
= D3 + κ2D + 3κκs,

Aκss
= D4 + κ2D2 + 5κκsD + 4κκss + 3κ2

s ,
(3.33)

etc. In fact, one can recursively construct the higher order operators starting with Aκ via

Aκn
= D · Aκn−1 + κκn, (3.34)

where κn = Dnκ; this will be proved below. Finally, specializing (3.10) and using (3.24), we
find

d	 = d[ι(dx)] = ι(d2x) + ν1 ∧ ι[v1(dx)] + ν2 ∧ ι[v2(dx)] + ν3 ∧ ι[v3(dx)]

= (−κ	 − ϑ1) ∧ (−ϑ) = −κϑ ∧ 	 + ϑ1 ∧ ϑ.

The first summand in the final expression is dV 	 (the second is dW 	 ), and hence the invariant
Hamiltonian operator is

B = −κ. (3.35)

Formula (3.34) is, in fact, a special case of the following result.

10
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Lemma 3.4. If K is any differential invariant, then

ADj K = Dj · AK −
p∑

i=1

(DiK)Bi
j . (3.36)

Proof. First, we have

dHdV K = dH [AK(ϑ)] =
p∑

j=1

	j ∧ DjAK(ϑ).

On the other hand, according to (2.8), (3.22),

dHdV K = −dVdH K = dV

⎡⎣ p∑
j=1

(DjK)	j

⎤⎦ =
p∑

j=1

[dV(DjK) ∧ 	j + (DjK)dV 	j ]

=
p∑

j=1

[
ADj K(ϑ) +

p∑
i=1

(DiK)Bi
j (ϑ)

]
∧ 	j .

Comparison of the individual coefficients of 	j completes the proof. �

Formula (3.36) is reminiscent of the recursive prolongation formula (3.2) for vector field
coefficients. In the case of curves, the analogy is exact, and one can establish an explicit
‘prolongation formula’, as in (3.3), for the invariant linearization operators associated with
the higher order differential invariants.

Corollary 3.5. For p = 1 dimensional submanifolds (curves), given a differential
invariant K,

ADnK = Dn · RK + (Dn+1K)D−1B, (3.37)

for all n � 0, where

RK = AK − (DK)D−1B (3.38)

will be called the characteristic operator associated with the differential invariant K.

Remark. The two non-local terms (involving D−1) in (3.37) cancel out, and so ADnK is an
honest differential operator.

Proof. The case n = 0 is a tautology. We then use induction on n and (3.36) to check

ADn+1K = D · ADnK − (Dn+1K)B = D[Dn · RK + (Dn+1K)D−1B] − (Dn+1K)B
= Dn+1 · RK + (Dn+2K)D−1B,

establishing the induction step. �

Strikingly, the characteristic operator RK will reappear in the following section as the
recursion operator for certain integrable nonlinear evolution equations arising from invariant
curve flows. Unfortunately, there does not appear to be any counterpart to this explicit formula
for higher dimensional submanifolds, e.g., surfaces. The difficulty stems from the non-
commutativity of the invariant differential operators coupled with the fact that the Hamiltonian
operator complex is not, in general, a total Jacobian. On the other hand, recursion operators
for higher dimensional evolution equations are also more involved [18, 57, 19]. An intriguing
question is whether the Fokas–Santini formalism can be adapted to the present framework.

11
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4. Invariant submanifold flows

In this section, we shift our attention to invariant submanifold flows. Let us single out the
m = p + q invariant 1-forms

	 1, . . . ,	p, ϑ1, . . . , ϑq (4.1)

consisting of the invariant horizontal forms (2.4) and the order 0 invariant contact forms (2.6).
Each is a linear combination of the coordinate 1-forms dx1, . . . , dxp, du1, . . . , duq on M,
whose coefficients are certain nth order differential functions, where n is the order of the
underlying moving frame.

Let S ⊂ M be a p-dimensional submanifold. Evaluating the coefficients of (4.1) on
the submanifold jet (x, u(n)) = jnS|z produces a basis for the cotangent space T ∗M|z of
the ambient manifold, which we continue to denote by (4.1). By construction, the resulting
coframe is equivariant under the action of G on S ⊂ M .

Warning: the resulting moving coframe forms are not obtained by simply pulling back the
1-forms (4.1) to S; the latter are sections of its cotangent bundle T ∗S → S, whereas our
construction produces a basis for the sections of the larger vector bundle T ∗M → S. Indeed,
any pulled-back contact form automatically vanishes on S itself. As a result, the 1-forms ϑα

span the tangent annihilator bundle (T S)⊥ ⊂ T ∗M at each point of S.
Let t1, . . . , tp, n1, . . . , nq, denote the corresponding dual tangent vectors, which form a

G-equivariant basis of the bundle T M → S, or frame on S. Since the contact forms annihilate
the tangent space to S, the vectors t1, . . . , tp form a basis for the tangent bundle T S, while
n1, . . . , nq form a basis for the complementary G-equivariant normal bundle NS → S induced
by the moving frame. In geometrical situations, they can be identified with the classical moving
frame vectors [23].

Example 4.1. Let us return to the case of planar Euclidean curves C ⊂ M = R
2. According

to example 2.1, the invariant coframe (4.1) is

	 = dx + uxdu√
1 + u2

x

=
√

1 + u2
x dx +

ux√
1 + u2

x

θ, ϑ = du − ux dx√
1 + u2

x

= θ√
1 + u2

x

. (4.2)

The corresponding dual frame vectors satisfy 〈t ;	 〉 = 〈n ;ϑ〉 = 1, 〈n ;	 〉 = 〈t ;ϑ〉 = 0,
and hence

t = 1√
1 + u2

x

(
∂

∂x
+ ux

∂

∂u

)
, n = 1√

1 + u2
x

(
−ux

∂

∂x
+

∂

∂u

)
, (4.3)

are the usual (right-handed) Euclidean frame vectors—the unit tangent and unit normal.
In general, let

V = V |S= VT + VN =
p∑

j=1

I j tj +
q∑

α=1

J αnα (4.4)

be a section of the bundle T M → S, where VT , VN denote, respectively, its tangential and
normal components, while I j , J α are differential functions, depending on the submanifold
jets. We will, somewhat imprecisely, refer to V as a vector field, even though it is only defined
on S. Any such vector field generates a submanifold flow:

∂S

∂t
= V|S(t). (4.5)

The flow (4.5) constitutes an nth order system of partial differential equations, where n refers
to the maximum order among our moving frame and the coefficients I j , J α . Assuming local

12
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existence and uniqueness, a solution S(t) to the submanifold flow equations (4.5) defines a
smoothly varying family of p-dimensional submanifolds of M. On the other hand, one typically
expects singularities to appear if the flow is continued for a sufficiently long time.

A submanifold flow (4.5) is called G-invariant if G is a symmetry group of the partial
differential equation. A general characterization of invariant submanifold flows is readily
established.

Lemma 4.2. The vector field V generates an invariant submanifold flow if and only if its
coefficients I j = 〈V ;	j 〉, J α = 〈V ;ϑα〉, are differential invariants.

The tangential components VT do not affect the extrinsic geometry of the submanifold,
but only affect its internal parametrization. Thus, if we are only interested in the images of
S(t) under the flow, and not their underlying parametrizations, we can set VT = 0 without
loss of generality. Therefore, the normal component

VN =
q∑

α=1

J αnα (4.6)

serves to characterize the same invariant submanifold flow as V, modulo reparametrization. We
will say that the vector field VN generates a normal flow, since it only moves the submanifold
in its G-equivariant normal direction—as prescribed by the moving frame.

Example 4.3. The most well studied are the Euclidean-invariant curve and surface flows. A
plane curve flow is generated by a vector field of the form

V = I t + Jn or, equivalently, VN = Jn, (4.7)

if we are not concerned about the tangential component’s effect on the parametrization. Here,
n denotes (one of the two) Euclidean normals to the curve; by convention, we use the inwards
normal n when the curve is closed. Particular cases include

(i) V = n: this induces the geometric optics or grassfire flow [6, 59];
(ii) V = κn: this generates the celebrated curve shortening flow [20, 21] used to great effect

in image processing [52, 59];
(iii) V = κ1/3n: the induced flow is equivalent, modulo reparametrization, to the equi-affine

invariant curve shortening flow, also effective in image processing [3, 52, 59];
(iv) V = κsn: this flow induces the modified Korteweg–deVries equation for the curvature

evolution, and is the simplest of a large number of soliton equations arising in geometric
curve flows [12, 22, 37];

(v) V = κssn: this flow models thermal grooving of metals [7].

A second important class is the invariant curve flows that preserve arc length [12, 37].
When p = 1, there is only one independent invariant horizontal 1-form

	 = ω + η = ds + η, (4.8)

whose horizontal component ω = ds can be identified with the G-invariant arc length element.
Invariance requires that the Lie derivative V(ω) vanishes on the submanifold, which (because
Lie derivatives preserve the contact ideal) implies the following:

Lemma 4.4. The curve flow induced by

V = I t +
q∑

α=1

J αnα, where I = 〈V ;	 〉, J α = 〈V ;ϑα〉, (4.9)

preserves arc length if and only if the Lie derivative V(	) is a contact form.

13
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Submanifolds of dimension p � 2 do not have distinguished parametrizations to play
the role of the arc length parameter; this is because the invariant horizontal forms are almost
never exact on the submanifold. On the other hand, the Lie derivative condition can be
straightforwardly mimicked.

Definition 4.5. The invariant submanifold flow induced by V is called intrinsic if V(	 i) ≡ 0
for all i = 1, . . . , p.

Lemma 4.6. If the vector field V defines an intrinsic flow, then it commutes with the invariant
differentiations: [V,Di] = 0 for i = 1, . . . , p.

Proof. For 1-forms α, β, we will write α ≡ β if α − β is a contact form. This implies that
α and β assume the same value when pulled back to a submanifold S. If F is any differential
function, then, by (2.5),

p∑
i=1

Di (V(F ))	 i = dH (V(F )) ≡ d(V(F )) = V(dF) ≡ V(dH F) = V

(
p∑

i=1

Di (F )	 i

)

=
p∑

i=1

(V[Di (F )]	i + Di (F )V(	 i)) ≡
p∑

i=1

V[Di (F )]	i,

because V is assumed to be intrinsic. �

Lemma 4.7. If V is an intrinsic flow, and A is any invariant differential operator, then
V A(ϑ) = A(V ϑ) for any invariant contact form ϑ .

Proof. Since V preserves the contact ideal, by Cartan’s formula for the Lie derivative

0 ≡ V(ϑ) = V dϑ + d(V ϑ) = V

(
p∑

i=1

	i ∧ Di (ϑ)

)
+

p∑
i=1

Di (V ϑ)	i

≡
p∑

i=1

[−V Di (ϑ) + Di (V ϑ)]	i,

whence V Di (ϑ) = Di (V ϑ) for all i = 1, . . . , p. The general result follows by iteration.
�

Let us establish explicit conditions for a submanifold flow to be intrinsic. We apply
Cartan’s formula, along with lemma 4.6 to compute

V(	 i) = V d	i + d(V 	i)

= V

⎛⎝−
∑
j<k

Y i
jk	

j ∧ 	k +
p∑

j=1

q∑
α=1

Bi
jα(ϑα) ∧ 	j + dW 	i

⎞⎠ + dI i

≡
p∑

j,k=1

Y i
jkI

k	j +
p∑

j=1

q∑
α=1

Bi
jα(J α)	j +

p∑
j=1

Dj I
i	 j ,

where we used lemma 4.7 on the middle summation, and the final expression omits all contact
components. This implies

Theorem 4.8. The flow induced by the vector field (4.4) is intrinsic if and only if

Dj I
i +

p∑
j,k=1

Y i
jkI

k +
q∑

α=1

Bi
jα(J α) = 0. (4.10)

14
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In particular, for curve flows generated by (4.9), there are no commutator invariants, and
so the condition (4.10) guaranteeing arc length preservation reduces to

DI = B(J ) =
q∑

α=1

Bα(J α), (4.11)

where D is the arc length derivative, while B = (B1, . . . ,Bq) is the invariant Hamiltonian
operator, defined by (3.22), which, in the case of curves, becomes

dV 	 = B(ϑ) =
q∑

α=1

Bα(ϑα). (4.12)

Example 4.9. For the Euclidean group action on plane curves, in view of (3.35), the condition
that a curve flow generated by the vector field V = I t + Jn be intrinsic is that

DI = −κJ. (4.13)

Most of the curve flows listed in example 4.3 have non-local intrinsic counterparts owing to
the non-invertibility of the arc length derivative operator on κJ . One exception is the modified
Korteweg–deVries flow, where J = κs , with I = − 1

2κ2. In general, the normal flow induced
by VN = Jn has a local intrinsic version if and only if E(κJ ) = 0, where E is the invariantized
Euler–Lagrange operator [29].

5. Evolution of invariants

A key issue appearing in many applications is to determine the time evolution of differential
invariants as the submanifold S(t) varies according to an invariant submanifold flow (4.5). In
this section, we derive general formulae that answer this question.

Let us first look at the case when the vector field V generates an intrinsic flow. Let K be
any differential invariant. Its time variation under the submanifold flow induced by V is found
by computing the Lie derivative:

V(K) = V dK = V

(
AK(ϑ) +

p∑
i=1

DiK	i

)
= AK(J ) +

p∑
i=1

I iDiK,

where J = (J 1, . . . , J q)T , and we used lemma 4.7.

Theorem 5.1. If the submanifold flow (4.5) is intrinsic, and K is any differential invariant,
then

∂K

∂t
= V(K) = AK(J ) +

p∑
i=1

I iDiK. (5.1)

The summation on the right-hand side of (5.1) is exactly the tangential evolution of K due
to the reparametrization:

p∑
i=1

I iDiK =
p∑

i=1

(DiK)V 	i = V dH K.

Thus, we immediately deduce the corresponding result for normal flows, obtained by
eliminating the tangential component:
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Theorem 5.2. If the submanifold flow (4.5) is normal, and K is any differential invariant, then
∂K

∂t
= V(K) = AK(J ). (5.2)

Example 5.3. For any of the Euclidean invariant normal plane curve flows Ct = Jn listed in
example 4.3, we have, according to (3.33),

∂κ

∂t
= (D2 + κ2)J,

∂κs

∂t
= (D3 + κ2D + 3κκs)J,

∂κss

∂t
= (

D4 + κ2D2 + 5κκsD + 4κκss + 3κ2
s

)
J.

(5.3)

For instance, for the grassfire flow J = 1, and so
∂κ

∂t
= κ2,

∂κs

∂t
= 3κκs,

∂κss

∂t
= 4κκss + 3κ2

s . (5.4)

The first equation immediately implies finite time blow-up at a caustic for a convex initial
curve segment, where κ > 0. For the curve shortening flow, J = κ , and
∂κ

∂t
= κss + κ3,

∂κs

∂t
= κsss + 4κ2κs,

∂κss

∂t
= κssss + 5κ2κss + 8κκ2

s , (5.5)

thereby recovering formulae used in Gage and Hamilton’s analysis [20]; see also Mikula and
Ševčovič, [39–41]. Finally, for the mKdV flow, J = κs ,

∂κ

∂t
= κsss + κ2κs,

∂κs

∂t
= κssss + κ2κss + 3κκ2

s ,

∂κss

∂t
= κsssss + κ2κsss + 9κκsκss + 3κ3

s .

(5.6)

Warning: normal flows do not preserve arc length, and so the arc length parameter s will vary in
time. Or, to phrase it another way, time differentiation ∂t and arc length differentiation D = Ds

do not commute—as can be observed in the preceding examples. Thus, one must be very
careful not to interpret the resulting evolutions (5.4)–(5.6) as partial differential equations in
the usual sense. Rather, one should regard the differential invariants κ, κs, κss, . . . as satisfying
an infinite-dimensional dynamical system of coupled ordinary differential equations. Later we
will see how the potentially infinite hierarchy of ordinary differential equations can be closed
off at a finite order through the use of signatures.

Turning our attention to the intrinsic, arc length preserving curve flow, the complication
alluded to in the preceding paragraph does not arise because, by lemma 4.6, time differentiation
now commutes with arc length differentiation. Substituting (4.11) in formula (5.1):

Theorem 5.4. Under an arc-length preserving flow,

κt = Rκ(J ) where Rκ = Aκ − κsD−1B (5.7)

is the characteristic operator (3.38) associated with κ . More generally, the time evolution of
κn = Dnκ is given by arc length differentiation:

∂κn

∂t
= Rκn

(J ) = DnRκ(J ). (5.8)

In this case arc length is preserved, and hence the arc length and time derivatives commute.
Thus, unlike (5.2), the arc-length preserving flow (5.7) is of the more usual analytical form.
However, there is a complication in that the term

κsD−1B(J ) = κs

∫
B(J ) ds (5.9)
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may very well be nonlocal, and so (5.7) is, in general, an integro-differential equation. Note
that any integration constant appearing in (5.9) just adds in a multiple of κs , which represents
the arc length preserving tangential flow κt = κs that just serves to translate the arc length
parameter: s �→ s + c and so can be effectively ignored. Also, on a closed curve, the integral
in (5.9) need not be periodic in s, and so one may not be able to continuously assign a uniquely
determined evolution along the entire curve—although, by the preceding remarks, all such
evolutions only differ by an overall translation of the arc length parameter by an integer
multiple of the total length of the curve.

In certain situations, (5.7) turns out to be a well-known local integrable evolution equation,
and the characteristic operator R is its recursion operator!

Example 5.5. In the case of Euclidean plane curves, the evolution of the curvature is given by

κt = Rκ(J ), (5.10)

where

Rκ = Aκ − κsD−1B = D2 + κ2 + κsD−1 · κ = D2
s + κ2 + κsD

−1
s · κ (5.11)

is the modified Korteweg–deVries recursion operator [46]. In particular, for the mKdV flow,
JÊ = κs , and (5.10) becomes

κt = Rκ(κs) = κsss + 3
2κ2κs,

which is the modified Korteweg–deVries equation, and R is its recursion operator. On the
other hand, for the grassfire flow, J = 1, and so

κt = Rκ(1) = κ2 + κsD
−1
s κ.

For the curve shortening flow, J = κ , and so

κt = Rκ(κ) = κss + κ3 + κsD
−1
s κ2.

Finally, for the thermal grooving flow, J = κss and so

κt = Rκ(κss) = κssss + κ2κss + κsD
−1
s κκss .

As noted above, the induced curvature flow (5.10) is local if and only if E(κJ ) = 0, where
E is the invariantized Euler operator or variational derivative, [46]. Clearly not all these local
curvature flows will be integrable.

Example 5.6. Let us treat a different example. Consider the action

(x, u) �−→ (αx + βu + a, γ x + δu + b), αδ − βγ = 1, (5.12)

of the equi-affine group SA(2) = SL(2) � R
2 on plane curves C ⊂ R

2. Applications to
computer vision can be found, for instance, in [3, 8, 52, 58]. According to [15, 23, 29],
the classical equi-affine moving frame arises from the choice of coordinate cross-section
x = u = ux = 0, uxx = 1, uxxx = 0. The fundamental differential invariant is the equi-affine
curvature

κ = ι(uxxxx) = uxxuxxxx − 5
3u2

xxx

u8/3
xx

. (5.13)

All higher order differential invariants are obtained by invariant differentiation with respect to
the invariant arc length form

	 = ι(dx) = ω + η, where ω = ds = u1/3
xx dx, η = uxxx

3u5/3
xx

θ, (5.14)
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with dual invariant differential operator D = u−1/3
xx Dx being the equi-affine arc length

derivative. Applying our computational algorithm, but suppressing the details, we obtain

dV κ = Aκ(ϑ), dV 	 = B(ϑ) ∧ 	,

where

Aκ = D4 + 5
3κD2 + 5

3κsD + 1
3κss + 4

9κ2, B = 1
3D

2 − 2
9κ.

The characteristic operator is

Rκ = Aκ − κsD−1B = D4 + 5
3κD2 + 4

3κsD + 1
3κss + 4

9κ2 + 2
9κsD

−1
s · κ. (5.15)

A general equi-affine invariant curve flow takes the form

Ct = I t + Jn, (5.16)

where t, n are, respectively, the equi-affine tangent and normal directions [23]. The equi-affine
curve shortening flow [3, 59] is the normal flow with I = 0, J = 1. Under this flow, the
equi-affine curvature and its derivative evolves according to

∂κ

∂t
= Aκ(1) = 1

3κss + 1
4κ2,

∂κs

∂t
= Aκs

(1) = DAκ(1) − κsB(1) = 1
3κsss + 1

10κκs.

(5.17)

A second example is the intrinsic (arc-length preserving) flow with J = κs . In this case, the
curvature evolution arises from the characteristic operator:

κt = R(κs) = κ5s + 2κκss + 4
3κ2

s + 5
9κ2κs,

which is the integrable Sawada–Kotera equation [61]. In this case, the characteristic operator
R is closely related to, but not the same as the Sawada–Kotera recursion operator, which is
given by the following formula [10]:

R̂ = R · (
D6 + 1

3κ + 1
3κsD−1

)
. (5.18)

Example 5.7. In the case of space curves C ⊂ R
3, under the Euclidean group G = SE(3) =

SO(3) � R
3, there are two generating differential invariants, the curvature κ and torsion τ .

According to [29], the relevant moving frame formulae are

dV κ = Aκ(ϑ), dV τ = Aτ (ϑ), dV 	 = B(ϑ) ∧ 	,

where ϑ = (ϑ1, ϑ2)
T is the column vector containing the order 0 invariant contact forms,

while the invariant linearization and Hamiltonian operators are

Aκ = (
D2

s + (κ2 − τ 2),−2τDs − τs

)
,

Aτ =
(

2τ

κ
D2

s +
3κτs − 2κsτ

κ2
Ds +

κτss − κsτs + 2κ3τ

κ2
,

1

κ
D3

s − κs

κ2
D2

s +
κ2 − τ 2

κ
Ds +

κsτ
2 − 2κττs

κ2

)
,

B = (κ, 0).

Thus, under an intrinsic flow with normal component VN = Jn1 + Kt2, the curvature and
torsion evolve via(

κt

τt

)
= R

(
J

K

)
, where R =

(
Rκ

Rτ

)
=

(
Aκ

Aτ

)
−

(
κs

τs

)
D−1B

is the complete characteristic operator. In particular, the flow with J = κs, K = τs induces
the vortex filament flow(

κt

τt

)
= R

(
κs

τs

)
which is integrable with recursion operator R, and can be mapped to the nonlinear Schrödinger
equation via the Hasimoto transformation [25, 32].
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6. Signature evolution

In the preceding section, we showed how to directly determine the time evolution of differential
invariants under an invariant submanifold flow. With this in hand, we are able to find
differential equations governing the evolution of their differential invariant signatures [8, 49].
A particularly important case is the behavior of the signature under invariant smoothing, e.g.,
the Euclidean-invariant curve shortening flow. The methods are completely general, but, for
brevity, we will only discuss the case of signatures of plane curves in this section.

For a plane curve C ⊂ R
2, the differential invariant signature is the curve � ⊂ R

2

parametrized by the first two differential invariants, i.e., (κ, κs). The signature curve uniquely
prescribes the original curve up to a group transformation. Thus, it provides an effective
means of object recognition and symmetry detection [8].

Suppose that, locally, the signature is given as the graph of a function

κs = �(κ). (6.1)

For the moment we ignore singularities. Also, the curve is assumed to have at most discrete
symmetries, and so the signature does not degenerate to a point. Once we know the functional
dependence (6.1) between κ and κs , the relations for the higher order derivatives follow. For
instance,

κss = �κ(κ)κs = �(κ)�κ(κ),

κsss = �(κ)2�κκ(κ) + �(κ)�κ(κ)2,

κssss = �(κ)3�κκκ(κ) + 4�(κ)2�κ(κ)�κκ(κ) + �(κ)�κ(κ)3

(6.2)

and so on. Now suppose we have a parametrized family of curves C(t) evolving according
to an invariant curve flow, which will be taken in normal form (4.6). (The signature is
independent of reparametrization, and this avoids the nonlocalities introduced in the intrinsic
form.) Our goal is to determine the induced signature curve flow, �(t). We assume that the
family of signatures is, locally, given by

κs = �(t, κ). (6.3)

Applying the chain rule and (3.36), we find

∂�

∂t
= ∂κs

∂t
− ∂�

∂κ

∂κ

∂t
= Aκs

(J ) − �κAκ(J ) = (D − �κ)Aκ(J ) − κsB(J ). (6.4)

Thus, to specify the time evolution of the signature function �, we replace the derivatives of
κ appearing in (6.4) by their expressions (6.1)–(6.2).

Example 6.1. Consider the Euclidean signature curve, parametrized by the curvature and its
derivative with respect to arc length. First, let us look at the grassfire flow. Substituting (5.4)
into the signature flow equation (6.4), we find

∂�

∂t
= 3κκs − κ2 ∂�

∂κ
= 3κ� − κ2 ∂�

∂κ
, (6.5)

which is a first-order linear transport equation, and hence easily solved by the method of
characteristics. For the curve shortening flow, we substitute (5.5) into (6.4) and then use (6.2),
whence

∂�

∂t
= κsss + 4κ2κs − (κss + κ3)

∂�

∂κ
= �2�κκ + ��2

κ + 4κ2� − (��κ + κ3)�κ

= �2�κκ − κ3�κ + 4κ2�, (6.6)
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leading to an nonlinear parabolic equation for �(t, κ) that has the flavor of a one-dimensional
porous medium equation [64]. Finally, for the modified Korteweg–deVries flow with (5.6),

∂�

∂t
= κssss + κ2κss + 3κκ2

s − (κsss + κ2κs)�κ

= �3�κκκ + 4�2�κ�κκ + ��3
κ + κ2��κ + 3κ�2 − (

�2�κκ + ��2
κ + κ2�

)
�κ

= �3�κκκ + 3�2�κ�κκ + 3κ�2. (6.7)

Example 6.2. The equi-affine signature curve is parametrized by κ, κs , where κ denotes the
equi-affine curvature (5.13) and s the equi-affine arc length (5.14). According to example 5.6,
under the equi-affine curve shortening flow Ct = n, the fundamental equi-affine differential
invariants evolve according to (5.17). Therefore, applying the preceding algorithm, we
conclude that the equi-affine signature κs = �(κ) evolves according to

∂�

∂t
= Aκs

(1) − �κAκ(1) = 1
3κsss + 10

9 κκs − �κ

(
1
3κss + 4

9κ2
)

= 1
3

(
�2�κκ + ��2

κ

)
+ 10

9 κ� − �κ

(
1
3��κ + 4

9κ2
)

(6.8)

= 1
3�2�κκ + 10

9 κ� − 4
9κ2�κ,

again of porous medium type.

Further analysis of signature flows, including space curves and surfaces, and applications
to image processing, tracking and control, will be discussed elsewhere.
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